A Novel Change Severity Detection Mechanism for the Dynamic 0/1 Knapsack Problem

نویسندگان

  • Aydin Karaman
  • A. Sima Etaner-Uyar
چکیده

Abstract. Evolutionary algorithms (EA) are commonly used for solving optimization problems that can be stationary or dynamic. From an EA viewpoint, dynamic problems differ from stationary problems, mainly because in a changing environment, the EA needs to be able to track the optima through generations. Performance of an EA in dynamic environments is improved if the EA is modified to address the special requirements of such environments. In this paper, a novel environment-quality measuring technique and a reliable change detection mechanism is proposed for the 0/1 knapsack problem. Possible improvements in an EA performance using the proposed methods are discussed. An example application is demonstrated through the hypermutation approach. It is shown that by using the environment quality information, the hypermutation technique becomes more adaptive to the nature of the change in the environment and its performance is increased. Promising preliminary results promote further study to extend the experiments to other EA approaches and problem domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem

A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...

متن کامل

An Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem

A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...

متن کامل

An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem

An iterative scheme which is based on a dynamic fixation of the variables is developed to solve the 0-1 multidimensional knapsack problem. Such a scheme has the advantage of generating memory information, which is used on the one hand to choose the variables to fix either permanently or temporarily and on the other hand to construct feasible solutions of the problem. Adaptations of this mechani...

متن کامل

Microsoft Word - camera_ready_icseem73

The 0/1 Multiple Knapsack Problem is an important class of combinatorial optimization problems, and various heuristic and exact methods have been devised to solve it. Genetic Algorithm (GA) shows good performance on solving static optimization problems. However, sometimes lost of diversity makes GA fail adapt to dynamic environments where evaluation function and/or constraints or environmental ...

متن کامل

A dynamic programming approach for solving nonlinear knapsack problems

Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004